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1 Introduction

In the Kremer and Maskin (1996) role-assignment model, workers are sorted into pairs,

and in each pair one worker is assigned to the supervisor role and the other to the

assistant role. Once these roles are assigned, output is supermodular in supervisor and

assistant skill, which encourages sorting like types in equilibrium. However, output is

more sensitive to supervisor skill, which yields a countervailing incentive to assign high

types as supervisors and low types as assistants. This countervailing effect implies that

the output function prior to role-assignment is not globally supermodular, and sorting

like types is not an equilibrium (Theorem 0 in the current paper).

The core assumptions in the role-assignment model are broadly applicable. Roles

could be hierarchical: a sales manager and a sales associate or a lead counsel and co-

counsel. In such applications, it is natural to assume that output is more sensitive to

the skills of those placed higher in the role hierarchy and that the assistant’s marginal

product rises in the skill of the supervisor (and vice versa). An alternative source of role

differentiation is task specialization: output could be a software project that merges two

separate modules. As long as the two tasks are complementary and the success of the

project is more heavily reliant on one of the modules, the role-assignment model applies.

The model is quite streamlined, and yet little is known about the equilibrium match-

ing except in extreme cases. For example, Kremer and Maskin (1996) assume a Cobb-

Douglas production function in which a type x supervisor and a type y assistant produce

output xy2. They fully characterize the equilibrium matching assuming three skill types

with middle types so prevalent that some must match together in equilibrium, pinning

down the wages for middle types. The role-assignment models since Kremer and Maskin

(1996), surveyed below, either make similarly extreme assumptions, limiting the appli-

cability of the model, or have little to say about equilibrium matching patterns.

This paper gives assumptions on production that yield a flexible and tractable role-

assignment model. In doing so, a novel matching pattern emerges: positive clustering.

In this blend of positive sorting in the large and locally negative sorting, workers endoge-

nously segment into skill intervals (or clusters). Within each cluster, median matching

obtains: all workers below the median are matched as assistants to supervisors with skill

above the median, and higher skill assistants are matched to higher skill supervisors.

Positive clustering is an intermediate matching pattern between median matching

and perfect sorting that generalizes both. Median matching is the special case with only

one skill cluster, and perfect sorting emerges in the limit as each cluster collapses to
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only one skill type. Not only are median matching and perfect sorting extreme matching

patterns, they are inflexible: there is only one way to median match or perfectly sort a

given distribution of types. In contrast, positive clustering is a flexible matching pattern:

any sequence of clusters defines a feasible matching that obeys positive clustering.

Since production is supermodular once roles have been assigned, the equilibrium

matching must involve positive sorting between sets of supervisors and assistants. Among

all such matchings, median matching is the least sorted, as it maximizes the distance

between the skills of matched partners. Since deviations from perfect sorting owe to

output being more sensitive to supervisor skill, we should expect large deviations from

perfect sorting when the wedge between supervisor and assistant marginal products is

sufficiently large. Theorem 1 captures this intuition: if the supervisor marginal product

is everywhere above the assistant marginal product, then median matching is the unique

equilibrium. In contrast, median matching cannot be an equilibrium if the median type

has a higher marginal product when matched as an assistant to a supervisor of the

highest type than when matched as a supervisor to an assistant of the lowest type.

The shifted marginal rate of technical substitution is the marginal product of a skill y

supervisor matched down to an assistant of type z ≤ y divided by the marginal product

of this same skill y placed in the assistant role matched up to x ≥ y. The smooth

pasting condition is satisfied for a given cluster if the shifted MRTS is 1 when x is

the highest type in the cluster, y is the median type, and z is the lowest type. When

the shifted MRTS is non-decreasing in x (Assumption 1), then there exists a unique

smooth positive clustering solution in which the smooth pasting condition is satisfied on

all but (perhaps) the lowest skill cluster (Lemma 2). One can construct this solution by

recursively equating two functions on a scalar domain: amarket clearing curve, capturing

feasibility of median matching within a cluster, and the smooth pasting condition.

Smooth positive clustering is not an equilibrium for all production functions obeying

Assumption 1. Lemma 1 provides a necessary and sufficient condition for verifying that

the recursively constructed smooth positive clustering solution is the unique equilibrium.

Theorem 2 establishes that homogeneity and Assumption 1 together imply that smooth

positive clustering is the unique equilibrium.1 Corollary 3 extends Theorem 2 to models

in which supervisor-assistant pairs buy capital on competitive markets after matches are

formed. Theorem 4 relaxes homogeneity and establishes that smooth positive clustering

is the unique equilibrium when the shifted marginal rate of technical substitution is

1Standard results in the optimal transport literature imply that the unique equilibrium is close to
the smooth positive clustering solution when production is nearly homogenous.
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log-convex and log-supermodular.

The equilibrium construction affords a straightforward and intuitive approach to

comparative statics. Specifically, the equilibrium construction involves recursively equat-

ing the market clearing and smooth pasting locus. Thus, since the market clearing con-

dition is independent of the production function, comparative statics follow from simply

shifting the smooth pasting curve, i.e. from changes in the shifted MRTS. Any mono-

tone change in the shifted MRTS implies a monotone shift in the smooth pasting curve.

Monotonicity is not necessary for comparative statics. Instead, I consider an ordinal

weakening: namely, production becomes more biased towards supervisor skill when the

shifted MRTS satisfies a single crossing condition. If production becomes more biased

towards supervisor skills across quantiles of the skill distribution, then the ratio of the

top to bottom skill quantile in a cluster falls (i.e. clusters get smaller) as we move from

lower to higher skill quantiles (Lemma 3). Corollary 1 applies the same logic to com-

parative statics across markets, establishing that markets with production that is more

biased towards supervisor skills have a smaller ratio of top to bottom skill quantiles in

all clusters. Intuitively, increasing the relative sensitivity of output to supervisor skill

makes clusters smaller; and thus, the matching closer to perfect sorting.

I then explore the relationship between sorting and wage inequality given CES pro-

duction. I consider both sorting across matches and sorting across clusters, measuring

the similarity of skills in a match by the difference between the skill quantiles of the

supervisor and assistant. Sorting across matches rises if the average distance between

matched supervisor and assistant skill quantiles falls. Sorting across clusters rises if it

takes more clusters to account for any fraction of the work force. Sorting rises if both

types of sorting increase. Theorem 3 establishes that sorting increases in output elastic-

ity and falls in the relative returns to supervisor skill and the elasticity of substitution

between supervisors and assistants.

A common measure of wage inequality is the ratio of wage quantiles, e.g., the 90th

percentile wage divided by the 10th percentile wage. Restricting attention to wage ratios

across clusters, for workers at same relative position within their cluster, we find that

wage inequality and sorting must positively covary across markets (Corollary 2). That

is, in the CES model, any parametric change that increases sorting either increases wage

inequality or leaves wage inequality unchanged. This positive covariance in sorting and

inequality is both intuitive and consistent with recent empirical work (e.g., Song, Price,

Guvenen, Bloom, and von Wachter (2019)).

Section 9 introduces a dynamic extension of the role-assignment model in which
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each individual’s skill evolves over time. In steady state, the distribution over skills

is fixed, but as long as individual workers remain in the market they move between

roles and clusters as their skills evolve over time. Theorem 5 asserts that both types

of mobility fall when production becomes more biased towards supervisor skills. Given

CES production, mobility, sorting, and inequality all positively covary across markets.

If we interpret clusters as coarse occupational (one-digit) groupings (e.g., managers and

administrators vs. clerical) and roles as finer (three-digit) groupings (e.g., sales manager

vs. sales clerk), then the positive link between mobility and wage inequality fits the

stylized facts for US data uncovered by Kambourov and Manovskii (2009).

This is not the first role-assignment paper to follow Kremer and Maskin (1996).

Legros and Newman (2002) establish that median matching is optimal with Cobb-

Douglas production and a sufficiently tight skill distribution. Li and Suen (2001) assume

production xαβy(1−α)β for α ∈ (1/2, 1), and show that median matching is optimal for

sufficiently tight skill distributions and not optimal for wide skill distributions with suf-

ficient weight in the lower tail. They also show that if it is possible to match pairs such

that every matched pair has supervisor to assistant skill ratio precisely [α/(1 − α)]1/β,

then such a matching must be optimal.

Gavilan (2012) posits production function maxk≥0

√
x(αyσ + (1− α)kσ)

1
2σ − pk with

σ ∈ (0, 1/2), α ∈ (0, 1). Gavilan assumes positive clustering2 and numerically explores

how sorting and inequality vary in discrete approximations to the continuum model. We

capture Gavilan production as a special case in Corollary 3; thereby establishing that

positive clustering is the unique equilibrium in Gavilan and providing a straightforward

methodology for analytic comparative statics.

Mak and Siow (2018) consider a role-assignment model with two-dimensional types.

These underlying types map into two separate scalar indices representing a worker’s

effective skill in the supervisor and assistant roles. As in the current work, the equilib-

rium follows from a market clearing curve and a curve that ensures that role-assignment

choices are incentive compatible (the analogue of my smooth pasting condition). In this

general model, they show that the wage functions inherit convexity from the production

function.

2The text asserts that this is the unique equilibrium (his Lemma 3). However, the “proof” in the
Appendix states that it is established numerically by solving the linear programming problem with N
types. Specifically, he writes that, “it turns out that the optimal assignment of those N skill types
obtained solving this maximization problem always coincides with the one established in Lemma 3.” I
infer that this means that he solved the discrete approximation numerically for a range of parameters
and observed that the numerical solution approximated positive clustering in each case.

4



McCann and Trokhimtchouk (2010) provide rigorous mathematical underpinnings

for the role-assignment model, allowing for multi-dimensional types. They establish the

welfare theorems (duality) and uniqueness of the optimal matching with complementar-

ity between supervisor and assistant skills. They also establish an equality that must

hold on any positive measure of types matched as both assistants and supervisors. This

equality is the smooth pasting condition that is satisfied at the median type within each

cluster (and perhaps nowhere else) in the current work.3

Anderson and Smith (2021) consider the comparative statics of sorting in general

matching models. Applying their theory to the role-assignment model, they show that

sorting cannot fall as the relative return to assistant skill rises. However, they show by

example that sorting need not rise. In particular, when the relative returns to assistant

skill rises, the matching can shift from one that is (roughly) sorted for low types and

mismatched for higher types to one that is sorted for high types and mismatched for

lower types. Thus, any theory of sorting comparative statics in the role-assignment

model must further restrict the production function, as done here.

Positive clustering is similar to block segregation, a matching pattern that arises in

non-transferable utility, two-sided, search-and-matching models (see Burdett and Coles

(1997) and Smith (2006)). Under block segregation agents also match within clusters,

but realized matches within each cluster depend on the random matching process.

The next section presents the core model. The median matching characterization ap-

pears in Section 3. Section 4 introduces the market clearing and smooth pasting curves

and shows how to use them to construct the equilibrium positive clustering solution. Sec-

tion 5 uses these curves to deduce comparative statics across clusters and across markets

as the skills distribution or production function changes. The comparative statics of the

sorting and wage inequality with CES production appears in Section 6. Section 7 extends

the model to allow for endogenous capital choice, while Section 8 provides alternative

sufficient conditions for positive clustering for non-homogenous production. Section 9

introduces a dynamic extension of the model and derives the comparative statics of

occupational mobility. Proofs follow results or appear in the Appendix.

3Since the set of such median types is measure zero in my positive clustering solution, I could not
use their result directly, but this was my inspiration for exploring solutions satisfying this condition.
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2 The Role-Assignment Model

This section introduces the role-assignment model studied in the current paper. As in

Becker (1973), assume a pairwise “unisex” matching model with no defined sides. The

skill of each individual is encoded by a scalar type x. The skill distribution is summarized

by cdf H : [x, x̄] 7→ [0, 1] for x ≥ 0 and density h on the full support.

A match between a supervisor of type x and an assistant of type y yields perfectly

divisible, strictly supermodular (SPM) output g(x, y) ≥ 0 (> 0 for (x, y) > 0). Output is

more sensitive to supervisor skill g(x, y) ≷ g(y, x) as x ≷ y, and g is C2, with derivatives

g1(x, y) and g2(y, x) uniformly bounded in y on any open interval x ∈ (a, b), and ordered

g1(x, x) > g2(x, x) for all x > 0. Taking into account that role-assignment is flexible,

pair (x, y) produces output:

f(x, y) ≡ max{g(x, y), g(y, x)} (1)

Toward defining a market equilibrium, let w(x) be the equilibrium wage of type x.

In competitive equilibrium any agent of type x may hire another agent of type y by

paying the equilibrium wage w(y). Thus, wages obey the maximization:

w(x) = max
y

[f(x, y)− w(y)] (2)

A matching is described by a symmetric bivariate cdfM on [x, x̄]2. The set of feasible

matchings M(H) is the space of symmetric cdfs on [x, x̄]2 with marginals Mx and My,

obeying Mx(z) +My(z) = H(z) for all z ∈ [x, x̄]. A matching need not specify a unique

match partner for each type: types x and y are matched if (x, y) lies in the matching set

— the support of M(x, y).

A Competitive Equilibrium (CE) is a pair (w,M) such that: the matching is feasible

M ∈ M(H), and wages are individually rational w ≥ 0, satisfy the optimization (2),

and matches are incentive compatible given wages:

(x̂, ŷ) ∈ supp(M) ⇒
ŷ ∈ argmaxy [f(x̂, y)− w(y)]

x̂ ∈ argmaxx [f(x, ŷ)− w(x)]
(3)

The competitive equilibrium is unique if the disagreement between any two CE matching

cdfs is measure zero.
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The Planner’s Problem is to choose a matching to maximize aggregate output:

V (H) = max
M∈M(H)

∫
[x,x̄]2

f(x, y)dM(x, y) (4)

Gretsky, Ostroy, and Zame (1992) established the welfare theorems for pairwise matching

problems with separate populations (e.g., buyers and sellers). For the current class of

models McCann and Trokhimtchouk (2010) establish:

Lemma 0 (McCann and Trokhimtchouk (2010)). The pair (w∗,M∗) is an equilibrium

if and only if M∗ solves the Planner’s Problem (4) and w∗ solves the dual Problem:

min
w

∫
w(x)h(x)dx s.t. w(x) + w(y) ≥ f(x, y) (5)

For any matching, let A = {x : (x, y) ∈ supp(M), x ≤ y} be the set of assistants,

types matched to weakly higher skilled partners, and S = {x : x ≥ y, (x, y) ∈ supp(M)}
be the set of supervisors, types matched to weakly lower skilled partners. A type x can

be both an assistant and a supervisor if some individuals of skill x match up to some

y > x, while other individuals of type x match down to some y′ < x. A matching

with supervisors S and assistants A is a pure pairing if there exists a bijective pairing

function µA : S 7→ A; such that the matching assigns measure zero to the set {(x, y) :
y ∈ A, y ̸= µA(x)}. In other words, a pure pairing is defined by a set of supervisors and

assistants, and a function assigning assistants to supervisors. A pure pairing allows for

overlapping sets of types assigned as supervisors and assistants. Following Legros and

Newman (2002), a pure pairing is increasing if µA is increasing. Types may self-match,

i.e. (x, x) ∈ supp(M), then x is both an assistant and a supervisor. Perfect sorting

obtains if all types self-match, and no other matches form.

Theorem 0. The unique equilibrium is an increasing pure pairing, and marginal wages

w′ are uniquely defined almost everywhere. Perfect sorting is not an equilibrium.

Monotonicity of the matching of supervisors to assistants follows from g SPM by

standard reasoning (e.g., Becker (1973)). The next lemma provides a useful method to

check whether a candidate pure pairing is an equilibrium.

Lemma 1. Let µA be any feasible increasing pure pairing. Then µA is an equilibrium

iff the following inequality obtains for all supervisors x ≥ y:

φ(x, y) ≡ g(x, µA(x)) + g(y, µA(y))− g(x, y)− g(µA(x), µA(y)) ≥ 0 (6)
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3 Median Matching

A preliminary step in the analysis is characterizing median matching. In a pure matching

every type is assigned a unique match, i.e. there exists a bijective matching function

µ : [x, x̄] 7→ [x, x̄], such that the matching assigns measure zero to the set {(x, y) :

y ̸= µ(x)}.4 Legros and Newman (2002) introduced median matching, a type of pure

matching. Specifically, if m̄ is the median skill in the economy, median matching obtains

when all types x ∈ (m̄, x̄) match with a type y ∈ (x, m̄), and for all such x above the

median, the slope of the matching function is µ′(x) = h(x)/h(µ(x)).

Legros and Newman (2002) show that for Cobb-Douglas production g(x, y) = x1−αyα,

α ∈ (0, 1/2), median matching obtains iff x̄/x ≤ (α/(1 − α))1/(1−α). That is, median

matching obtains iff the skills domain is sufficiently tight.5 The next result asserts that

median matching obtains for sufficiently tight skills domains and implies that median

matching does not obtain for sufficiently spread skills distribution quite generally.

Theorem 1. Median matching is the unique equilibrium when g1(·, x) ≥ g2(x̄, ·) and

fails to obtain if g1(m̄, x) < g2(x̄, m̄). In particular, median matching is the unique

equilibrium if the skill lower bound x is sufficiently close to the upper bound x̄.

Proof: For any pure pairing µA and any pair of supervisors x, y with y ≥ µA(x), the

fundamental theorem of calculus for (6) yields:

φ(x, y) =

∫ y

µA(x)

[g1(s, µA(y))− g2(x, s)] ds ∀ y ≥ µA(x) (7)

Since µA(x) ≤ y for any pair of supervisors (x, y) given median matching, use g1(·, x) ≥
g2(x̄, ·), followed by g SPM, and then (7) to discover:

0 ≤
∫ y

µA(x)

[g1(s, x)− g2(x̄, s)] ds ≤
∫ y

µA(x)

[g1(s, µA(y))− g2(x, s)] ds = φ(x, y)

Thus, median matching is the unique equilibrium by Lemma 1 and Theorem 0. Finally,

since g1 and g2 are continuous and g1(x, x) > g2(x, x), inequality g1(·, x) > g2(x̄, ·)
obtains whenever x and x̄ are sufficiently close together.

4A pure matching is more restrictive than a pure pairing, as the latter allows for a positive measure
of types assigned as both assistants and managers.

5McCann and Trokhimtchouk (2010) generalize this result to Cobb-Douglas production with multi-
dimensional types.
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To see that median matching cannot obtain when g1(m̄, x) < g2(x̄, m̄), assume (on

the contrary) that this inequality holds and median matching is an equilibrium. Given

median matching, we have µA(x̄) = m̄; and thus, by (6) we have φ(x̄, m̄) = 0. Then,

since φ is continuously differentiable in x on (m̄, x̄) and µ′ > 0 on the same domain, we

find:
lim
x↑x̄

φ1(x̄, m̄) = [g2(x̄, m̄)− g1(m̄, x)] lim
x↑x̄

µ′(x̄) > 0

Altogether, inequality (6) is violated at (x̄− ε, m̄) for small ε > 0 and median matching

cannot be an equilibrium by Lemma 1. □

Theorem 1 does not directly assert that median matching fails for sufficiently spread

skill distributions. However, an immediate corollary is that median matching cannot

obtain for sufficiently small x when g1(m̄, 0) = 0 (e.g., Cobb-Douglas), and also cannot

obtain for sufficiently larger x̄ provided limx̄→∞ g2(x̄, m̄) = ∞ (e.g., CES). Thus, median

matching fails to obtain for sufficiently spread skill distribution quite generally.

4 Positive Clustering

This section defines positive clustering, shows how to recursively construct the unique

matching obeying smooth positive clustering (SPC), and establishes conditions under

which this matching is the unique equilibrium.

4.1 Positive Clustering Defined

Fix any decreasing sequence x̄ ≡ x0 > x1 > . . . xN = 0, allowing N = ∞. Then, the

median type mn in skill cluster [xn+1, xn] obeys the market clearing condition:

H(mn)−H(xn+1) = H(xn)−H(mn) (8)

A matching displays positive clustering if no type matches outside of their skill cluster

and median matching obtains within every skill cluster. Thus, positive clustering is a

form of pure matching in which the matching function µ obeys:

∀x ∈ (mn, xn) : H(xn)−H(x) = H(mn)−H(µ(x)) ⇒ h(x)

h(µ(x))
= µ′(x) (9)

Figure 1 illustrates that positive clustering mixes elements of positive and negative
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Figure 1: Matching Patterns. Positive clustering is an intermediate matching pattern
that generalizes both median matching (left) and perfect sorting (right). The left and
middle graphs assume uniformly distributed types.

sorting. Conditional on the set of assistants and supervisors, the matching is positively

assortative, and there is positive sorting across clusters, since every type in a cluster

is higher than all types in any lower cluster. However, there is negative sorting within

clusters, since all assistants x1 and x2 match with supervisors y1 and y2, for which

max(x1, x2) < min(y1, y2). Positive clustering generalizes both median matching (left)

and perfect sorting (right), since median matching is the special case of positive cluster-

ing with one skill cluster, and perfect sorting obtains in the limit as every type becomes

its own cluster. One advantage of positive clustering for applied work is flexibility: there

is only one way to perfectly sort or median match, while any sequence of clusters defines

a feasible matching obeying positive clustering.

By Theorem 0, wages are differentiable almost everywhere; thus, if positive clustering

is an equilibrium, we can apply the Envelope Theorem to wage maximization (2) to

derive the associated marginal wages:

w′(x) = g2(µ(x), x) ∀x ∈ (xn+1,mn)

w′(x) = g1(x, µ(x)) ∀x ∈ (mn, xn)
(10)

4.2 Smooth Positive Clustering Construction

In this subsection we construct a special case of positive clustering. The first step

of the construction is to convert to quantile space. First, define the type function

X : [0, 1] 7→ [x, x̄] by H(X(q)) ≡ q, i.e., X(q) is the type of skill quantile q. The quantile

production function is then g(p, q) ≡ g(X(p), X(q)). We will assume henceforth that the
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skills density h is C1. Under this assumption the quantile production function inherits

all the properties imposed on g in Section 2.6

Toward constructing and illustrating the desired positive clustering solution, define

the ratio of lowest to highest skill quantile rn ≡ qn+1/qn for each cluster n. Similarly,

define the ratio of median quantile to top quantile Rn ≡ (qn+1 + qn)/(2qn); i.e., Rnqn is

the median quantile on cluster n. In quantile space the market clearing condition (8)

relates these two ratios as rn = ρM(Rn), where

ρM(Rn) = 2Rn − 1 ∀Rn ∈
[
1

2
, 1

]
(11)

Toward the second key function, consider the following equation:

g1(Rnqn, ρSqn)− g2(qn, Rnqn) = 0 (12)

Since g(p, q) is SPM, the LHS is strictly increasing in ρS. Thus, we may define the

function ρS(R|q) ∈ [0, 1] as ρS(R|q) = 1 when g1(Rq, q) < g2(q, Rq), ρS(R|q) = 0 when

limp→0 g1(Rq, p) ≥ g2(q, Rq), and the unique solution to (12) otherwise.

To gain some intuition for condition (12), consider the median type mn in cluster

[xn+1, xn]. If the median type is indifferent between matching down to xn+1 and up to

xn, then these two types should solve maximization (2) at x = mn. In addition, if the

envelope condition (10) is satisfied for both y = xn+1 and y = xn, then:

w′(mn) = g1(mn, xn+1) and w
′(mn) = g2(xn,mn) ⇒ g1(mn, xn+1) = g2(xn,mn) ⇔

g1(mn, xn+1)X
′(mn) = g2(xn,mn)X

′(mn) ⇔ g1(Rnqn, rnqn) = g2(qn, Rnqn) (13)

In words, if (13) is satisfied with equality, then the rate of change in the median quantile’s

(Rnqn) value when matching up to qn is equal to the rate of change in the median

quantile’s value when matching down to qn+1 ≡ rnqn. We refer to both (12) and (13) as

smooth pasting conditions and ρS as the smooth pasting locus.7

6This smoothness assumption on the skills density is made for expository convenience. Without it
the quantile production function inherits all properties from g, except that g may only be C1 (rather
than C2). To see why, differentiate the identity H(X(q)) ≡ q , to get X ′(q) = h(X(q))−1. Thus, the
density h must be C1 for g(X(p), X(q)) to be C2.

7I borrow the term smooth pasting from optimal stopping problems, in which the optimal harvest
time equates the rate of change in the value of the planted tree to the rate of change in the value of the
harvested wood. Analogously, equation (13) equates the rate of change in the value of the median type
when matching up to the rate of change in the value of the medium type when matching down.
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We will not assume ex ante that smooth pasting must be satisfied. Instead, we

construct a positive clustering solution that obeys this condition on all but (perhaps)

the lowest cluster and then verify that the constructed matching is indeed an equilibrium.

Our construction makes use of the following assumption.

g1(b, c) = g2(a, b) ⇒ 2g12(b, c) ≥ g22(a, b)− g11(b, c) ∀ a ≥ b ≥ c (14)

Lemma 2. Given condition (14), there is a unique R∗ ∈ [1/2, 1) s.t. ρM(R∗) = ρS(R
∗|q) ≡

r∗(q) ∈ [0, 1), and there is a unique matching obeying positive clustering with breakpoints

given by q0 = 1 and qn+1 = r∗(qn)qn. If g1(m̄, x) ≥ g2(x̄, m̄), then median matching ob-

tains, else there are N ≥ 2 clusters and (13) holds for all n < N .

Since the smooth pasting condition (13) holds on all but (perhaps) the lowest skill

cluster, we refer to this matching as the smooth positive clustering solution (SPCS).

Lemma 2 provides a constructive algorithm: start with the top quantile q0 = 1 and

solve for the ratio r∗(1) by equating the market clearing ρM and smooth pasting ρS

functions.8 The next cluster breakpoint is then q1 = r∗(1). Then recursively solve for

each subsequent cluster by equating market clearing and smooth pasting evaluated at

qn to determine r∗(qn), and thus, qn+1 = r∗(qn)qn. This recursion may not end within a

finite number of steps, but each step is computationally trivial and the exact matching

on any domain (q̂, 1] with q̂ > 0 can be computed in a finite number of steps.

Lemmas 1 and 2 together provide a recipe for confirming when smooth positive

clustering obtains in role-assignment models obeying (14). Specifically, since the smooth

positive clustering solution is a feasible pure pairing (by construction), one can verify

that this is an equilibrium by confirming inequality (6) for all pairs of supervisors (x, y)

such that x ≥ y. We explore exogenous characteristics of the production function that

guarantee that the SPCS is the unique equilibrium below.

4.3 Positive Clustering with Homogeneous Production

As I later argue, the following monotone ratio property is satisfied by commonly used

homogenous production functions.

Assumption 1. The ratio g1(b, c)/g2(a, b) is non-decreasing in b for all a ≥ b ≥ c.

8Condition (14) ensures that ρS crosses ρM once, necessarily from above.
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The marginal rate of technical substitution between supervisor and assistant skill

quantiles is g1(p, q)/g2(p, q). Assumption 1 considers the marginal product of skill quan-

tile b in the supervisor role (matching down to c) and the marginal product of this same

skill quantile in the assistant role (matching up to a). Assumption 1 demands that this

shifted MRTS be monotone in b.

An immediate implication of Assumption 1 is that the smooth pasting locus ρS

is non-increasing in R. To see this, rewrite the smooth pasting condition (12) as

g1(Rnqn, ρSqn)/g2(qn, Rnqn) = 1, and notice that the left hand side is increasing in

R; and thus, ρS must fall in R by g SPM.

Theorem 2. Impose Assumption 1. Median matching is the unique equilibrium iff

g1(m̄, x) ≥ g2(x̄, m̄). If g1(m̄, x) < g2(x̄, m̄) and g is homogenous, then SPC is the

unique equilibrium and the ratio rn = qn+1/qn > 0 is constant across clusters.

For some insight into the proof in Appendix A.4, note that Assumption 1 im-

plies (14).9 Consequently, there exists a unique smooth positive clustering solution

by Lemma 2; feasible by construction. Since the equilibrium matching is unique by

Theorem 0, we need only verify that the proposed matching is an equilibrium. The

Appendix does this by showing that inequality (6) holds for all supervisor pairs x ≥ y.

For supervisors in the same cluster, Assumption 1 and g1(mn, xn) ≥ g2(xn,mn)

together guarantee that φ is increasing in y and weakly downcrossing in x.10 Since

φ(xn,mn) = 0 (trivially by (1)), this is sufficient for φ ≥ 0 for supervisors in the

same cluster. That is, under Assumption 1, the inequality g1(mn, xn) ≥ g2(xn,mn) is

sufficient for within cluster incentive compatibility. The inequality is also necessary by

φy(xn,mn) ∝ g1(mn, xn+1)−g2(xn,mn). Since the smooth positive clustering solution is

median matching when g1(m̄, x) ≥ g2(x̄, m̄) (Lemma 2), this inequality is necessary and

sufficient for median matching. More generally, within cluster incentive compatibility

obtains for all clusters since g1(mn, xn) ≥ g2(xn,mn) on all clusters for the SPCS.

When g1(m̄, x) < g2(x̄, m̄), the SPCS has more than one cluster (Lemma 2). In

this case, we must also consider deviations across clusters. Easily, φ(mn, xn+1) = 0 and

φy(mn, xn+1) ∝ g1(xn+1,mn+1)− g2(mn, xn+1); and thus, g1(xn+1,mn+1) ≤ g2(mn, xn+1)

is necessary for φ(mn, y) ≥ 0 for supervisors y just below xn+1. This inequality is also

sufficient for φ(x, y) ≥ 0 when x is in a higher cluster than y. In particular, Appendix A.4

9 Indeed, since g is C2, Assumption 1 is equivalent to g11(b, c)/g1(b, c) ≥ g22(a, b)/g2(a, b) for
a ≥ b ≥ c. Thus, since g is increasing in both arguments, Assumption 1 implies g11(b, c) ≥ g22(a, b)
whenever g1(b, c) = g2(a, b), and so, since g12 ≥ 0, condition (14) holds.

10That is, φ(x′, y) < 0 implies φ(x′′, y) ≤ 0 for all x′′ ≥ x′ ≥ y.
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proves that Assumption 1 and g1(xn+1,mn+1) ≤ g2(mn, xn+1) together imply that φ is

decreasing in y and weakly upcrossing in x for all y in a lower cluster than x. When the

quantile production function is homogenous we can “scale down” the smooth pasting con-

dition in cluster n, and apply Assumption 1 to establish g1(xn+1,mn+1) ≤ g2(mn, xn+1).

In fact, in the homogenous case, smooth positive clustering takes a particularly simple

form. If g1(m̄, x) ≥ g2(x̄, m̄) then median matching obtains. Otherwise, the matching

is fully described by the unique pair (r∗, R∗) that satisfies r∗ = ρS(R
∗) = ρM(R∗) > 0,

and there is an infinite sequence of clusters with qn = (r∗)n.

Appendix A.6 verifies that Theorem 2 applies to the following two examples.

Example 1 (CES). Smooth positive clustering is the unique equilibrium when g(p, q) =

(αpσ + (1− α)qσ)
β
σ with β > σ ≥ 0 and α ∈ (1/2, 1).

The parametric restrictions are necessary. Quantile production g is strictly SPM iff

β > σ, and output is more sensitive to supervisor skill iff α > 1− α and σ ≥ 0. Given

β > σ, Assumption 1 is satisfied iff α ∈ (1/2, 1) and σ ≥ 0. Section 6 explores this

example in more detail.

Example 2 (Gavilan (2012)). Smooth positive clustering is the unique equilibrium for

g(x, y) = maxk≥0 x
1
2 (αyσ + (1−α)κσ)

1
2σ − ϱκ with σ ∈ (0, 1/2) and α ∈ (0, 1) is regular.

This example, assumes that supervisor-assistant pairs purchase capital in a compet-

itive market after matches have been formed. Section 7 extends the role-assignment

model to accomodate endogenous capital choices and provides sufficient conditions for

smooth positive clustering that subsume the Gavilan production function as a special

case (Corollary 3). Roughly, Corollary 3 requires that capital be more productivity

enhancing for supervisors than for assistants.

5 Comparative Statics Across Clusters and Markets

As shown in the last section, the unique smooth positive clustering solution follows from

recursively equating the market clearing locus ρM and the smooth pasting condition

ρS (Figure 2, left). This approach simplifies the equilibrium construction and affords

powerful and intuitive tools for analyzing how the positive clustering solution changes

with shifts in the production function.

First, consider variation across clusters. Easily, the ratios rn = qn+1/qn and Rn =

(qn+qn+1)/(2qn) must be co-monotone across clusters, since the market clearing locus is
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Figure 2: Illustrations for Lemma 3. The sequence of clusters follows from q0 = 1
and difference equation qn+1 = r∗(qn)qn, where r

∗(qn) is determined by the intersection
of the market clearing locus ρM and the smooth pasting locus ρS (left). The market
clearing locus ρM is independent of qn, while ρS shifts down in qn given Assumption 2 (i)
(middle) and up in qn when Assumption 2 (ii) holds.

independent of q and increasing in R. Thus, by Theorem 2, both ratios are constant in n

when g is homogenous. This owes to the fact that the difference g1(kb, kc)− g2(ka, kb)

has a constant sign in k for homogeneous production functions; and so, the smooth

pasting locus ρS defined by (12) is independent of qn. Toward generalizing homogeneity,

recall that the function η : R 7→ R is upcrossing if η(z) ≥ (>)0 implies η(z′) ≥ (>)0 for

all z′ ≥ z. A function η is downcrossing if −η is upcrossing. We then have the following

two natural generalizations of homogeneity:

Assumption 2. (i) g1(kb, kc)− g2(ka, kb) is upcrossing in k for a ≥ b ≥ c and

(ii) g1(kb, kc)− g2(ka, kb) is downcrossing in k for a ≥ b ≥ c.

These assumptions imply that the SPC solution is monotone across clusters.11

Lemma 3. For any smooth positive clustering solution, the ratios (rn, Rn) are non-

decreasing in n under Assumption 2(i) and non-increasing in n under Assumption 2(ii).

Proof: The difference g1(Rq, ρSq) − g2(q, Rq) is increasing in ρS by g SPM: thus, ρS

shifts down in q under Assumption 2(i) and up in q under Assumption 2(ii). Mono-

tonicity of the sequence then follows from the market clearing condition upward sloping,

qn falling in n, and (rn, Rn) uniquely solving rn = ρS(Rn|qn) = ρM(Rn) (Lemma 2). □

11Moreover, these upcrossing assumptions are robustly necessary for ρS to be monotone in q.
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Figure 3: Induction Proof of Lemma 4 Illustrated. When production becomes
more biased towards supervisor skill, ρS(·|qn) shifts down for any fixed qn; and thus,
(r1, R1) falls as shown on the left. The change in all lower clusters also depends on
how ρS(·|qn) responds to changes in qn. When Assumption 2 (i) holds the endogenous
response reinforces the initial effect, as shown on the right.

By definition rn+1 ⪌ rn as qn−1/qn ⪌ qn/qn+1. Thus, cluster size, as measured by the

ratio of the top quantile to bottom quantile in a cluster, increases moving from lower to

higher skill clusters (i.e., as n falls) under Assumption 2(i). Conversely, clusters decrease

in size when moving from lower to higher skill clusters under Assumption 2(ii). Both

cases are illustrated in Figure 2.

Now consider comparisons across separate matching markets A and B with quantile

production gA and gB. Recall that g1 is the supervisor marginal product and g2 is

the assistant marginal product. Thus, an increase in the marginal rate of technical

substitution between supervisors and assistants g1/g2, implies an increase in the relative

returns to supervisor skill. We impose an ordinal version of this assumption; namely,

production is more biased towards supervisor skill in market A than market B if:

gB
1 (b, c) ≥ gB

2 (a, b) ⇒ gA
1 (b, c) ≥ gA

2 (a, b) ∀ a ≥ b ≥ c (15)

Lemma 4. If Assumptions 1 and 2(i) hold in markets A and B, then the smooth positive

clustering solutions obey rAn ≤ rBn and qAn ≤ qBn ∀n when production is more biased

towards supervisor skill in market A.

Proof: Let ρAS and ρBS be the smooth pasting conditions in markets A and B, and let

rA(q), RA(q) be the unique (by Lemma 2) ratios equating market clearing and smooth

pasting in market A, i.e., rA(q) ≡ ρM(RA) = ρAS (R
A|q); and similarly define the unique
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ratios rB(q), RB(q) in market B. Now, since the difference g1(Rq, ρSq) − g2(q, Rq) is

increasing in ρS by g strictly SPM, condition (15) implies ρAS (R|q) ≤ ρBS (R|q); and thus,

rA(q) ≤ rB(q), since ρM is upward sloping (Figure 3, left).

We establish qAn ≤ qBn by induction. Easily, qA1 ≡ rA(1) ≤ rB(1) ≡ qB1 . The proof of

Lemma 3 showed that Assumption 2(i) implies that ρS(R|q) shifts down in q. Figure 3

(right) illustrates the induction step: assume qAn ≤ qBn , then apply rA(q) non-increasing

in q, followed by rA(q) ≤ rB(q), and then qn+1 = r(qn)qn in each market, to get:

qAn ≤ qBn ⇒ rA(qAn )q
A
n ≤ rA(qBn )q

B
n ⇒ rA(qAn )q

A
n ≤ rB(qBn )q

B
n ⇔ qAn+1 ≤ qBn+1

□

Since homogeneous production satisfies Assumption 2(i), Theorem 2 and Lemma 4

provide the following immediate corollary.

Corollary 1. Assume production is homogenous and obeys Assumption 1 in markets

A and B with production more biased towards supervisor skill in market A. Then SPC

obtains in each market with rA ≤ rB and qAn ≤ qBn ∀n.

6 Sorting and Wage Inequality

In this section, I consider the interplay between sorting and wage inequality for a special

case of the model. Specifically, assume CES quantile production g(p, q) = (αpσ + (1 −
α)qσ)

β
σ for α ∈ (1/2, 1) and β > σ ≥ 0. Smooth positive clustering is the unique

equilibrium by Example 1 where the critical threshold separating median matching from

positive clustering with more than one cluster is g2(1, 0.5) = g1(0.5, 0), i.e.:(
2σ +

1− α

α

)β−σ
σ

=
α

1− α
(16)

Given CES production, the smooth pasting condition (12) is independent of qn:(
α + (1− α)Rσ

αRσ + (1− α)ρS(R)σ

)β−σ
σ

≡ α

1− α
(17)

These two equations allows for a sharp characterization of the equilibrium:

Lemma 5. There exists a unique β∗(α, σ) > σ satisfying (16), and this β∗ is increasing

in α and σ. Median matching obtains iff β ≤ β∗. If β > β∗, then SPC obtains with

qn = rn for some r ∈ (0, 1). This r rises in β and falls in α and σ. Perfect sorting

obtains in the limit as β ↑ ∞ or α ↓ 1
2
.
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Figure 4: The Comparative Statics of Segregation. Left: A shift up in the output
elasticity β. Middle: An increase in returns to supervisor skill α. Right: An increase in
the elasticity of substitution between supervisors and assistants σ.

Consider the elasticity of output β. When β is low, median matching obtains. Once

β increases above β∗, equilibrium involves an infinite sequence of clusters. As β increases

further, the ratio r = qn+1/qn rises; and thus, each qn shifts up. Since β∗ is increasing

in all arguments, the opposite occurs for α and σ: median matching obtains for high

values of the parameter, and once β∗ exceeds β, r rises as the parameter falls (Figure 4).

Next consider the implications of these comparative statics for sorting and inequality.

First consider sorting across matches. In order to ensure that sorting is independent of

the skill scaling, consider the quantile matching function µ̂(p) ≡ H(µ(H−1(p)). Sorting

across matches increases in some parameter if the average distance between partners,∫ 1

0
|µ̂(p)− p|dp, falls in the parameter.12

Next consider sorting across clusters. For any matching µ obeying positive clustering,

let n(k) be the index of the cluster with the kth largest measure of workers qn(k)−1−qn(k),
and QK(µ) be the sum

∑k
k=1 qn(k)−1−xn(k) across theK clusters with the largest measure

of workers. Trivially, perfect sorting has QK = 0 for all finite K, while for median

matching QK = 1 for all K ≥ 1. Let µ and µ′ be two matchings obeying positive

clustering. We say that µ is more sorted across clusters than µ′ iff QK(µ) ≤ QK(µ
′).

Finally, sorting increases in some parameter iff sorting increases across matches and

across clusters. The comparative statics of sorting are summarized in Theorem 3.

Theorem 3. Sorting falls in the relative returns to supervisor skill (α) and the elasticity

of substitution between supervisors and assistants (σ), and rises in output elasticity (β).

12All derived comparative static predictions hold for
∫ 1

0
|µ̂(p)/p− 1|dp.
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Proof: The measure of each cluster qn − qn+1 = qn(1 − r) falls in n. Thus, QK(µ) =∑K
n=1(qn−1 − qn) = 1 − rn falls in r; or equivalently, sorting across clusters rises in

r, implying that sorting across clusters rises in β and falls in α and σ by Lemma 5.

Appendix A.8 establishes that sorting across matches rises in r. □

These changes in sorting are intuitive. Sorting should increase as the complemen-

tarity between supervisor and assistant skills increases. Thus, since the cross partial of

the production function g is proportional to (β − σ), sorting rises in β and falls in σ.

Now, recall that deviations from perfect sorting are driven by the asymmetric roles of

supervisors and assistants, and α ∈ (1/2, 1) parameterizes this asymmetry. In the limit

as α ↓ 1/2, asymmetries vanish, and the matching converges to perfect sorting. More

generally, sorting is falling in the supervisor-assistant production asymmetry.

Now consider a standard measure of inequality, the ratio of wages at different quan-

tiles of the wage distribution. Since wages are increasing in skill, we can define the

quantile wage function W (p) = w(X(p)). Using homogeneity of the quantile production

function and the quantile analogue of marginal wages (10), Appendix A.9 proves:

W (rnp) = rβnW (p) ∀ n = 1, 2, . . . (18)

Consequently, if q ∈ (rn+1, rn) and q′ ∈ (rn
′+1, rn

′
) for integers n > n′ obey q/rn = q′/rn

′
,

then W (p) = r(n
′−n)βW (p′). That is, moving up k clusters increases wages by a factor of

r−βk. Equation (18) affords a simple measure of inequality across clusters. Specifically,

if p′/p = r−k for some integer k, then by (18) wage inequality between quantiles p′ and

p < p′ is W (p′)/W (p) = (r−k)β = (p′/p)β.13 Trivially, inequality across clusters is rising

in the output elasticity (β). Combining this insight with the comparative statics of

sorting in Theorem 3 we have:

Corollary 2. Sorting and inequality positively covary across matching markets.

There is empirical support for this prediction. Song, et. al. (2019) find positive

co-movement of wage inequality and measures of wage sorting within firms. H̊akanson,

Lindqvist, and Vlachos (2021) measure sorting by skills directly (vs. inferring sorting by

skills from sorting by wages) in Sweden from 1986 to 2008 and document that sorting

increased substantially along with wage inequality. Changes in search frictions are an

alternative mechanism linking sorting and inequality. However, there is strong prima

facie evidence that changes in search technology are not the primary driver of the changes

13The function (p′/p)β will closely approximate wage inequality for all quantiles that are sufficiently
far apart, or for any fixed pair of quantiles when r is sufficiently low.
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in Swedish data. In particular, most of the increase in sorting took place from 1986 to

1995 (see their Figure 1), predating widespread use of the internet. Thus, for search

technology to be the main protagonist of the story requires a change in search technology

from 1986 to 1995 that swamps the impact of the internet from 1996 to 2008.14

7 Endogenous Capital

Now allow for endogenous capital choice after matches have been formed. Specifically,

supervisor-assistant pair (p, q) with capital κ ≥ 0 produces C3 and strictly SPM gross

production ĝ(p, q, κ) > 0 for (p, q, κ) > 0, with ĝ1(p, q, κ) and ĝ2(p, q, κ) uniformly

bounded on open balls. After matches form, any κ ≥ 0 can be purchased at per unit

price ϱ > 0. The quantile production function is then g(p, q) = maxk≥0 ĝ(p, q, κ)− ϱκ.

To ensure that g is more sensitive to supervisor skill, assume ĝ(p, q, κ) ≷ ĝ(q, p, κ)

as p ≷ q for all κ > 0 and ĝ1(p, p, κ) > ĝ2(p, p, κ) for all (p, κ) > 0. To guarantee

that the optimal capital stock is well-defined and strictly positive, assume ĝ33 < 0 with

limκ→0 ĝ3(p, 0, κ) > ϱ for all p > 0 and limκ→∞ ĝ3(1, 1, κ) < ϱ.

The role-assignment model with capital is a role-assignment model with g as described

in the preceding two paragraphs. Appendix A.6 verifies that such a ĝ obeys all of the

assumptions of the model in Section 2. But to extend Theorem 2 we need assumptions

on ĝ that imply a monotone shifted MRTS as in Assumption 1. The first is simply an

analogous condition on gross production:

Assumption 3. The ratio ĝ1(b,c,κ)
ĝ2(a,b,κ′)

is non-decreasing in b for all a ≥ b ≥ c and κ′ ≥ κ.

This new assumption is not sufficient, as it ignores changes in the marginal products

ĝ1 and ĝ2 induced by changes in the optimal capital stock. To ensure that such changes

do not overturn the desired monotone ratio property, also consider:

− ĝ13(b, c, κ)
2

ĝ1(b, c, κ)ĝ33(b, c, κ)
≥ − ĝ23(a, b, κ

′)2

ĝ2(a, b, κ′)ĝ33(a, b, κ′)
∀a ≥ b ≥ c and κ′ ≥ κ (19)

Since ĝ is strictly SPM and strictly concave in κ, this inequality demands that capital

be more productivity enhancing for supervisors than for assistants. To see how this

relates to the monotone shifted MRTS, note that the optimal capital stock rises in

both the supervisor and assistant skill quantiles by ĝ SPM (Topkis (1998)). Thus, if

14I do not claim that there is no role for search frictions in explaining the observed changes in sorting
and inequality, only that it seems unlikely that changes in search frictions are the full story.
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inequality (19) did not hold, then the endogenous response to an increase in b would

work to counteract the direct effect imposed in Assumption 3.

The Appendix shows that Assumption 3 and inequality (19) together guarantee that

Assumption 1 is satisfied in the role-assignment model with capital and establishes the

following corollary of Theorem 2:

Corollary 3. Smooth positive clustering is the unique equilibrium in the role-assignment

model with capital if ĝ is h.d. 1 and obeys Assumption 3 and inequality (19).

Altogether, positive clustering is robust to endogenous capital choice, when capital

is predominantly productivity enhancing for supervisors.

8 Robust Smooth Positive Clustering

It is well known that optimal matchings are continuous in production; and thus, the SPC

solution will well-approximate the optimal matching when production is “close to” meet-

ing the premise of Theorem 2.15 In fact, if “non-decreasing” is replaced with “increasing”

in Assumption 1, then the unique equilibrium will be exactly the smooth positive cluster-

ing solution for production functions that are nearly homogeneous. Rather than make

this last statement precise, I consider a general class of non-homogenous production

functions for which SPC is the unique equilibrium.

Absent homogeneity we must discipline the second order properties of the smooth

pasting locus, which in turn follow from the second order properties of the shifted

marginal rate of technical substitution.

Assumption 4. The ratio g1(Rq, rq)/g2(q, Rq) is individually log-convex in r, R, and

q, and log-SPM in (r, R, q−1)

Theorem 4. If Assumptions 1, 2(i), and 4 hold, then smooth positive clustering is the

unique equilibrium, (rn, Rn) is non-decreasing in n, and all cluster breakpoints qn fall as

production becomes more biased towards supervisor skill.

Appendix A.10 establishes that SPC is the unique equilibrium. Monotonicity of the

ratios (rn, Rn) then follows from Lemma 3, and the comparative statics of the cluster

breakpoints qn across matching markets follows from Lemma 4.

15Precisely, fix a sequence of production functions {gk} meeting the assumptions of the role-
assignment model in Section 2, and converging uniformly to a production function g that meets the
premise of Theorem 2. Then a subsequence {Mk} of the optimal matching sequence weakly converges
to the optimal matching for g, which obeys SPC by Theorem 2. See Theorem 5.20 in Villani (2008).
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To gain some insight into the role of Assumptions 2(i) and 4, recall that homogeneity

is only used in the proof of Theorem 2 to show that

g1(qn+1, Rn+1qn+1)

g2(Rnqn, qn+1)
≤ 1 (20)

which in turn rules out profitable deviations across clusters given Assumption 1. Since,

rn is non-decreasing in n under Assumption 2(i), we have an infinite sequence of clusters

in Theorem 4. Consequently, the smooth pasting condition (13) holds on all clusters. In

particular, on clusters n and n+ 1, i.e.:

g1(Rnqn, rnqn)

g2(qn, Rnqn)
=
g1(Rn+1qn+1, rn+1qn+1)

g2(qn+1, Rn+1qn+1)
= 1 (21)

Now notice that the arguments on the LHS of inequality (20) are pointwise between the

arguments in the two ratios in (21); namely,

Rn+1qn+1 ≤ qn+1 ≤ Rnqn, rn+1qn+1 ≤ Rn+1qn+1 ≤ rnqn, qn+1 ≤ Rnqn ≤ qn

The proof in Appendix A.10 shows that (21) and Assumption 4 together imply that

g1(R̄q̄, r̄q̄)/g2(q̄, R̄q̄) ≤ 1 for the averages R̄ = (Rn + Rn+1)/2, r̄ = (rn + rn+1)/2, and

q̄ = (qn + qn+1)/2. Of course, these averages are not precisely the arguments in (20).

But the additional structure afforded by Assumptions 1 and 2(i), along with g SPM,

establishes that inequality (20) follows from g1(R̄q̄, r̄q̄)/g2(q̄, R̄q̄) ≤ 1.

9 Mobility Across Roles and Clusters

This section considers mobility across roles and clusters over time for individual agents

in a dynamic extension of the role-assignment model.

9.1 Mobility in a Dynamic Matching Model

Assume that the role-assignment matching model is repeated in periods 1, 2, . . . ,∞ with

static production function g(x, y). At the start of each period the distribution over skill

types on [0,∞) is given by Ht. At the end of each period, fraction δ of agents leave the

market and are replaced by a new cohort of mass δ with cdf H0. The evolution of skills

is independent of the matching. Specifically, if an individual with skill type xt in period

t survives, then T (xt+1|xt) is the cdf over her skill types in period t + 1, which is first
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order increasing in xt. Altogether, the skills distribution evolves as:

Ht+1(x) = δH0(x) + (1− δ)

∫ ∞

0

T (x|s)dHt(s) (22)

Let H be the unique steady state distribution over skills implied by this contraction.

Assume the Planner maximizes aggregate steady state output, i.e., solves (4) given

H.16 Since skill transitions are independent of partner skill, the Planner solution can be

decentralized as a market equilibrium in which all agents choose partners to maximize

their present discounted value of wages (as in Lemma 0).17

9.2 Occupational Mobility in a Stylized Example

Kambourov and Manovskii (2008) studies mobility across occupations and industries

in the US from 1968-1997, finding that both forms of mobility are substantial and in-

crease over this time period. Kambourov and Manovskii (2009) study the link between

occupational mobility and wage inequality. They document that occupational mobility

and wage inequality positively covary in US data, a finding that is robust to alternative

specifications of occupational mobility and wages. They then posit a model of occupa-

tion specific human capital, calibrate the model to the mobility data, and show that the

mobility calibration well-approximates the wage inequality data.

The frictionless role-assignment model is also consistent with a positive covariance

between mobility (occupation or industry) and wage inequality.18 In order to make

this link precise, interpret roles as three-digit occupations (e.g., sales manager vs. sales

clerk), and clusters as larger occupational (one-digit) groupings (e.g., managers and

administrators vs. clerical).19 We can then analyze occupational mobility in the steady

state of the dynamic matching model.

To simplify the analysis, consider the following continuum time limit of the dynamic

matching model. All workers enter the market as a type x = 0. Poisson death occurs

16If an impatient Planner maximizes the pdv of aggregate output starting from any Ht, then the
distribution will converge to H and the sequence of optimal matchings Mt will converge to the matching
that maximizes steady state flow output.

17In fact, Anderson and Smith (2010) show that the welfare theorems extend to the case where the
transition cdf T depends on own type and current partner type.

18Intuitively, frictions make it easier to support positive clustering as an equilibrium, since frictions
introduce switching costs across roles or clusters. In a role-assignment model with frictions, changes in
sorting, mobility, and inequality would flow from changes in production and search technology.

19For alternative applications, clusters can be interpreted as firms with matched pairs assigned to
tasks within the firm (e.g., attorneys assigned as lead and co-counsel to cases within law firms).
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within t units of entry with chance 1 − e−λt. While in the market, each worker’s skill

increases linearly over time: A worker surviving for t units of time becomes skill type

γt. Thus, the steady state cdf evaluated at x is the chance that an individual dies before

making it to skill x, i.e., H(x) = 1−e−
λ
γ
x. Inverting this cdf, and using xt = γt, we find:

p = 1−e−
λ
γ
X(p) ⇒ pt = 1−e−λt ⇒ τ(p|q) = λ−1 [log(1− p)− log(1− q)] (23)

where pt is the quantile of a worker who survives until time t, and τ(p|q) is the time it

takes a worker to move from skill quantile p to skill quantile q > p.

Given any steady state, define τ -mobility within clusters as the fraction of workers

that start as assistants and transition to supervisors at least once during an interval of

length τ . Similarly, Define τ -mobility across clusters as the fraction of workers that move

between clusters at least once over time horizon τ . Now consider comparing mobility

across separate matching markets, A and B. We say that mobility within (across)

clusters is higher in market B than A if τ -mobility within (across) clusters is higher in

B than A for all τ . We say that mobility is higher in B than A if both forms of mobility

are higher in B. For markets with a constant ratio r = qn/qn+1 (e.g., homogeneous

production), Appendix A.11 establishes that mobility rises in r, which combined with

Lemma 4 yields the following result:

Theorem 5. If steady state production is homogenous and obeys Assumption 1 in mar-

kets A and B, with production more biased towards supervisor skill in market A, then

mobility is higher in market B than A.

An immediate implication is that sorting and mobility positively covary across such

matching markets. In particular, with CES production g(p, q) = (αpσ+(1−α)qσ)β
σ as in

Section 6,20 mobility falls in the relative returns to supervisor skill (α) and the elasticity

of substitution between supervisors and assistants (σ), and rises in output elasticity (β).

We can then embellish Corollary 2 as follows:

Corollary 4. Sorting, mobility, and inequality positively covary across markets.

10 Conclusion

Kremer and Maskin (1996) is perhaps the most famous early example of a transferable

utility partnership model without Becker’s supermodularity premise. The core assump-

20That is, g(x, y) = (αH(x)σ + (1− α)H(y)σ)
β
σ for H(x) = 1− e−

λ
γ x.
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tions of the model are natural, but characterizing the solution and determining compar-

ative statics has proven difficult. Intuitively, absent any restrictions, the role-assignment

model is too flexible, and thus not much can be said about equilibrium sorting patterns

or comparative statics. On the other hand, models with globally supermodular payoffs

are too rigid, allowing no deviations from perfect sorting.

This paper makes progress by introducing smooth positive clustering, identifying

sufficient conditions for positive clustering, and showing how the solution can be obtained

by solving a sequence of straightforward equations in scalar unknowns. Comparative

statics follow from shifting the smooth pasting curve. The methodology was illustrated

for CES production, determining the comparative statics of sorting and wage inequality.

A dynamic extension assumed an inflow of workers each period, exogenous death,

and type dynamics for all surviving workers. While the type distribution and equi-

librium matching remain constant by assumption, this extension allows for interesting

career paths for individual workers. For example, under the natural assumption that

(conditional on survival) worker types move up over time, the model can rationalize

transitions from a supervisory role in a low productivity match (firm) to an assistant

role in a high productivity match (firm). In a stylized version of the model, sorting,

mobility, and wage inequality positively covary across matching markets, including over

time, as in US data (see H̊akanson, Lindqvist, and Vlachos (2021) and Kambourov and

Manovskii (2009)).21

A second extension would be to allow for more than two roles per match. For example,

assume production requires an assistant, manager, and supervisor. Posit a sequence of

skill clusters. Within each cluster, assume all workers below the 1/3rd quantile are

assistants, and all above the 2/3 are supervisors, and all others assigned as managers,

and that there is positive sorting conditional on assigned roles. Then generalize the

unique matching in Lemma 2 by imposing smooth pasting at the highest assistant and

highest manager in each cluster.22 Verifying that this unique matching is immune to

tri-lateral deviations is less straightforward.

21A further extension posits learning from match partners as in Anderson and Smith (2010).
22Alternatively, assume firms with one supervisor and two assistants, where all workers below the

2/3rd quantile within a cluster are assistants. A more ambitious extension allows for scaling up the size
of firms (as in Eeckhout and Kircher (2018)), with an endogenous assistant to supervisor ratio.
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A Omitted Proofs

A.1 Proof of Theorem 0

Step 0. The unique equilibrium is an increasing pure pairing.

Corollary 1, Remark 4 in McCann and Trokhimtchouk (2010) establishes uniqueness of

the optimal matching. Now notice that the production function f satisfies the weak

increasing differences condition in Legros and Newman (2002), since x1 > x2 ≥ x3 > x4

and g SPM implies:

g(x2, x3)−g(x3, x4) ≤ g(x1, x2)−g(x1, x4) ⇒ f(x2, x3)−f(x3, x4) ≤ f(x1, x2)−f(x1, x4)

Also, the type distribution admits a density. Altogether, the matching is an increasing

pure pairing by Propositions 3 and 5 in Legros and Newman (2002).

Step 1. Locally Lipschitz and locally semiconvex functions.

The function f(x, y) is locally Lipschitz, if it is Lipschitz in x on any open interval (a, b)

with Lipschitz constant independent of y (not necessarily independent of (a, b)). The

function f(x, y) is locally semiconvex if for all open intervals (a, b), there exists an error

function χ : R → R obeying limz→0 χ(z)/z = 0, such that for all x, x′ in (a, b), and

t ∈ [0, 1],

f((1− t)x+ tx′, y) ≤ (1− t)f(x, y) + tf(x′, y) + t(1− t)χ(|x− x′|) (24)

Step 2. The production function is locally Lipschitz.

By assumption, the derivatives of g are uniformly bounded on any interval (a, b), i.e.,

we have g1(x, y) ≤ L1 and g2(y, x) ≤ L2 for all y, for finite L1, L2. Also, the pointwise

maximum of Lipschitz functions with common Lipschitz constant L is Lipschitz with

constant L by Lemma 2.1 in Heinonen (2005). Altogether, f(x, y) is Lipschitz with

constant L = max{L1, L2} independent of y for x ∈ (a, b) as required.

Step 3. The production function is locally semiconvex.23

23This may be a known result. There are results establishing that the pointwise maximum of “semi-
convex functions” is “semiconvex” (ex. Mifflin (1977)). However, the definition of semiconvexity varies
across references, and I am not aware of a result for the form of semiconvexity needed in Step 4.
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The production function g is C2; and thus, for any open interval (a, b), there exists

bounded constant c > 0 such that min{g11(x, y), g22(y, x)} ≥ −c, which implies that

the functions g(x, y) and g(y, x) are locally semiconvex with common error function

χ(z) = cz2/2 (Villani (2008) Example 10.11). Thus, for all (x, x′) ∈ (a, b):

g((1− t)x+ tx′, y) ≤ (1− t)g(x, y) + tg(x′, y) + ct(1− t)(x− x′)2 and

g(y, (1− t)x+ tx′) ≤ (1− t)g(y, x) + tg(y, x′) + ct(1− t)(x− x′)2

Given these inequalities and convexity of the max operator, f((1− t)x+ tx′, y) equals

max{g((1− t)x+ tx′, y), g(y, (1− t)x+ tx′)}

≤ max{(1− t)g(x, y) + tg(x′, y), (1− t)g(y, x) + tg(y, x′)}+ ct(1− t)(x− x′)2

≤ (1− t)max{g(x, y), g(y, x)}+ tmax{g(x′, y), g(y, x′)}+ ct(1− t)(x− x′)2

= (1− t)f(x, y) + tf(x′, y) + t(1− t)c(x− x′)2

Step 4. Wages are a.e. differentiable and returns to skill, w′ are a.e. unique.

Since the distribution over types admits a density, the premise of Proposition 3 in Chi-

appori, McCann, and Nesheim (2010) is met by Steps 2 and 3.24 Thus, any equilibrium

wage function must be almost everywhere differentiable, and any two equilibrium wage

functions w and ŵ obey w′ = ŵ′ a.e..

Step 5. Perfect sorting cannot be an equilibrium.

Use g C2 and g1(x, x) > g2(x, x) to discover the following for small ε > 0:

g(x, x) + g(x+ ε, x+ ε)− 2g(x+ ε, x) ≈ ε [g2(x, x)− g1(x, x)] < 0 ∀x > 0

Thus, the payoff for two mismatched pairs (x+ ε, x) beats positively sorting (x, x) and

(x+ ε, x+ ε), and perfect sorting cannot be an equilibrium.

24The definition of semiconvexity in Chiappori, McCann, and Nesheim (2010) appears to differ from
the one I use here, but the two notions are equivalent (see Villani (2008) Proposition 10.12). Chiappori
et al (2010) applies for fixed sets of assistants and supervisor. But Step 0 established the uniqueness of
the allocation into sets of supervisors and assistants.
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A.2 Proof of Lemma 1

Any feasible pure pairing matching µA is an equilibrium, iff output cannot be increased

by rematching any pairs (x, µA(x)) and (y, µA(y)), i.e.:

f(x, µA(x))+f(y, µA(y))−max{f(x, y)+f(µA(x), µA(y)), f(x, µA(y))+f(y, µA(x))} ≥ 0

Since µA is an increasing pure pairing, we may WLOG assume x ≥ y are supervisors;

and thus, x ≥ µA(x), y ≥ µA(y), and µA(x) ≥ µA(y). So, the preceding inequality is:

g(x, µA(x))+g(y, µA(y))−max{g(x, y)+g(µA(x), µA(y)), g(x, µA(y))+f(y, µA(x))} ≥ 0

(25)

Now, consider mutually exclusive and exhaustive cases: y > µA(x) and y ≤ µA(x).

Case 1: y > µA(x). In this case f(y, µA(x)) = g(y, µA(x)). Making this substitution

and using g SPM we find:

g(x, µA(x)) + g(y, µA(y))− g(x, µA(y))− f(y, µA(x))

= g(x, µA(x)) + g(y, µA(y))− g(x, µA(y))− g(y, µA(x)) ≥ 0

Thus, φ(x, y) ≥ 0 (i.e., inequality (6)), is equivalent to inequality (25).

Case 2: y ≤ µA(x). In this case f(y, µA(x)) = g(µA(x), y). Making this substitution

and using g SPM we find:

max{g(x, y) + g(µA(x), µA(y)), g(x, µA(y)) + f(y, µA(x))}

= max{g(x, y) + g(µA(x), µA(y)), g(x, µA(y)) + g(µA(x), y)} = g(x, y) + g(µA(x), µA(y))

Again we see φ(x, y) ≥ 0 (i.e., inequality (6)) is equivalent to inequality (25).

A.3 Proof of Lemma 2

Step 1. The function ρS.

Since g is C2, ρS(R|q) is continuous in R with ρ′S(R) well-defined for all ρS(R) ∈ (0, 1).

Thus, we totally differentiate (12), rearrange and use (14) with 1 ≥ R ≥ ρS to find:

ρS(R|q) ∈ (0, R) ⇒ ρ′S(R|q) =
g22(q, Rq)− g11(Rq, ρS(R)q)

g12(Rq, ρS(R)q)
≤ 2

Step 2. There is a unique R∗ ∈ [1/2, 1) s.t. ρM(R∗) = ρS(R
∗) ≡ r∗ and r∗ ∈ [0, 1).
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Trivially, ρ′M(R) = 2 with endpoints ρM(1/2) = 0 and ρM(1) = 1, while ρS endpoints

obey ρS(1|q) < 1 (by g1(q, q) > g2(q, q)) and by definition of ρS:

ρS(1/2|q) > 0 ⇔ g2(q, q/2) > lim
p↓0

g1(q/2, p) (26)

Thus, since ρM and ρS are both continuous in R, there exists a unique R∗ ∈ [1/2, 1)

such that ρM(R∗) = ρS(R
∗) ≡ r∗(q) ∈ [0, 1) for all q ∈ (0, 1]. Further, by (26), r∗(q) > 0

iff g2(q, q/2) > limp↓0 g1(q/2, p). In particular, median matching obtains (equivalently,

r∗(1) = 0) when g2(1, 1/2) ≤ limp↓0 g1(1/2, p), i.e., when g2(x̄, m̄) ≤ g1(m̄, x).

Step 3. On all clusters we must have g1(Rnqn, rnqn) ≥ g2(qn, Rnqn).

Toward a contradiction, assume some cluster with g1(Rnqn, rnqn) < g2(qn, Rnqn), i.e.,

g1(R
∗(qn)qn, ρS(R

∗(qn)|qn)qn) < g2(qn, R
∗(qn)qn). Then by construction of ρS, we must

have r∗(qn) ≡ ρS(R
∗(qn)|xn) = 1, contradicting Step 2.

Step 4. The sequence of clusters.

As shown in Step 2, r∗(q) ∈ [0, 1); and thus the sequence defined by qn+1 = r∗(qn)qn

must be strictly decreasing in n. There are two possibilities: r∗(qk) = 0 for some k <∞,

in which case the sequence is finite, or r∗(qn) > 0 for all n in which case the sequence is

infinite. As shown in Step 2, g2(q, q/2) > limp↓0 g1(q/2, p) implies q1 = r∗(1) > 0; and

thus at least two clusters, with (13) satisfied on all but the lowest cluster by construction.

Now consider the infinite sequence case. Since the sequence is decreasing and con-

tained in the closed interval [0, 1], it must converge. To verify that the sequence {qn}
converges to 0, assume not, i.e., qn → q∞ > 0; and thus, qn+1 → q∞ and the median

on any interval Rnqn → q∞. Then by continuity of g1,g2 we must have g1(qn, Rnqn) →
g1(q∞, q∞) and g2(Rnqn, qn+1) → g2(q∞, q∞), but since g1(q, q) > g2(q, q) for all q ≥ 0,

these limits contradict (13) and q∞ > 0. □

A.4 Proof of Theorem 2

The result follows from Lemmas 6 and 7, stated and proven below. We say that smooth

positive clustering obeys across cluster incentive compatibility if inequality (20) obtains

on all but (perhaps) the top cluster (i.e., for all n > 0).

Lemma 6. If g is homogenous and Assumption 1 holds, then the smooth positive clus-

tering solution uniquely exists and obeys across cluster incentive compatibility.
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Proof: The text established that the SPCS uniquely exists by Lemma 2 given Assump-

tion 1. And since g is homogenous, the difference g1(kb, kc)− g2(ka, kb) has a constant

sign in k, implying that ρS(R|q) is constant in q (by (12)): thus, Rn is constant in n.

Further, Assumption 1 implies g1(b, c)− g2(a, b) is upcrossing in b for a ≥ b ≥ c.

To show that (20) holds for all n > 0, impose the smooth pasting condition (13)

(valid by Lemma 2 and n > 0), apply g1(kb, kc) − g2(ka, kb) constant in k = Rn, then

g1(b, c)−g2(a, b) is upcrossing in b with R
2
n > rn (trivially true for conditional quantiles),

followed by Rn = Rn+1, and then qn+1 ≡ rnqn to recover inequality (20):

g1(Rnqn, rnqn) = g2(qn, Rnqn) ⇔ g1(R
2
nqn, Rnrnqn) = g2(Rnqn, R

2
nqn)

⇒ g1(rnqn, Rnrnqn) ≤ g2(Rnqn, rnqn)

⇒ g1(rnqn, Rn+1rnqn) ≤ g2(Rnqn, rnqn)

⇔ g1(qn+1, Rn+1qn+1) ≤ g2(Rnqn, qn+1) □

Lemma 7. Impose Assumption 1. If g1(m̄, x) ≥ g2(x̄, m̄), then median matching is the

unique equilibrium, if g1(m̄, x) < g2(x̄, m̄), then the SPCS is the unique equilibrium if it

obeys across cluster incentive compatibility (i.e., inequality (20) for all n).

Proof: Assume the quantile matching function µ̂(p) ≡ H(µ(H−1(p)) obeys smooth pos-

itive clustering, which uniquely exists by Lemma 2, and let S and A be the associated

sets of supervisor and assistant skill quantiles with subsets Sn and An on clusters n. Re-

call φ defined in (6) and define the associated quantile function ψ(p, q) ≡ φ(X(p), X(q))

for all supervisors p, q. All steps impose Assumption 1, while inequality (20) will only

be imposed when explicitly stated in the step header.

The function η : R 7→ R is strictly upcrossing if η(z) ≥ 0 ⇒ η(z′) > 0 for all z′ > z.

Step 1. The function g1(q, µ̂(q))−g2(a, q) is strictly upcrossing in q on S
⋂
{q : q ≤ a}.

This follows since we can write the given function as the product of a positive function

and an increasing function (by Assumption 1 and g12 > 0):

g1(q, µ̂(q))− g2(a, q) = g2(a, q)

[
g1(q, µ̂(q))

g2(a, q)
− 1

]
Step 2. ψ2(p, q) > 0 on [Rnqn, qn]× (Rnqn, p].

By definition of ψ, the quantile analogue of (7) holds for q ≥ µ̂(p):

ψ(p, q) =

∫ q

µ̂(p)

[g1(s, µ̂(q))− g2(p, s)] ds (27)
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Now, apply Step 3 in the proof of Lemma 2, followed by g SPM and p ≤ qn, and then

Step 1 with q > Rnqn and µ̂(Rnqn) = qn+1, and finally g12 ≥ 0 to get:

g1(Rnqn, qn+1)− g2(qn, Rnqn) ≥ 0 ⇒ g1(Rnqn, qn+1)− g2(p,Rnqn) ≥ 0 ⇒
g1(q, µ̂(q))− g2(p, q) > 0 ⇒ ψ2(p, q) = g1(q, µ̂(q))− g2(p, q) +

∫ q

µ̂(p)
g12(s, µ̂(q))ds > 0

Step 3. Given q ∈ [Rnqn, p], ψ(p, q) is weakly downcrossing in p on [Rnqn, qn].

Let σ : R2 7→ R, denoting by σ+ ≡ max(σ, 0) and σ− ≡ −min(σ, 0) the positive and

negative parts of σ. The function Σ(t) =
∫
[a,b]

σ(s, t)ds is weakly upcrossing in t if

Σ(t) > 0 ⇒ Σ(t′) ≥ 0 for all t′ ≥ t. Theorem 1 in Anderson and Smith (2021) asserts

that Σ(t) is weakly upcrossing in t when ∀s, s′ ∈ S and t′ ≥ t:25

σ−(s ∧ s′, t)σ+(s ∨ s′, t′) ≥ σ−(s, t′)σ+(s′, t) (28)

Notice that this inequality is satisfied for any function σ that is non-decreasing in s

and t, since (s ∨ s′, t′) ≥ (s′, s) ⇒ σ+(s ∨ s′, t′) ≥ σ+(s′, t), and (s, t′) ≥ (s ∧ s′, t) ⇒
σ−(s ∧ s′, t)≥σ−(s, t′). In particular, the function σ̂(s, t) ≡ 1 − g2(1 − t, s)/g1(s, µ̂(q))

obeys (28) since g is SPM and the ratio g2(1 − t, s)/g1(s, µ̂(q)) is non-increasing in s

(Assumption 1). Likewise the function σ̃(s, t) ≡ g1(s, µ̂(q))1s≥µ̂(1−t) obeys (28) since the

indicator function 1s≥µ̂(1−t) is non-decreasing in s and t (the latter by µ̂ increasing) and

g1(s, µ̂(q)) > 0 is independent of t. Easily, the product σ = σ̂ · σ̃ also satisfies (28). Now

we can rewrite (27) as:

ψ(1− t, q) =

∫ q

0

[
1− g2(1− t, s)

g1(s, µ̂(q))

]
g1(s, µ̂(q))1s≥µ̂(1−t)ds ≡

∫ q

0

σ(s, t)ds (29)

Altogether, ψ(1 − t, q) is weakly upcrossing in t, i.e., ψ(p, q) is weakly downcrossing in

p.

Step 4. Given inequality (20), ψ2(p, q) < 0 on [Rnqn, qn]×S
⋂
{q : q < qn+1}.

Similarly to Step 2, the following holds for all supervisors q ≤ µ̂(p):

ψ(p, q) =

∫ µ̂(p)

q

[g2(p, s)− g1(s, µ̂(q))] ds (30)

Now, apply inequality (20), followed by g SPM and p ≥ Rnqn, and then Step 1 with

25This Theorem applies to any function σ : RN × T for any sub-lattice S ⊆ RN and poset (T,⪰).
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q < qn+1 and µ̂(qn+1) = Rn+1qn+1, and finally g12 > 0 to get:

g1(qn+1, Rn+1qn+1)− g2(Rnqn, qn+1) ≤ 0 ⇒ g1(qn+1, Rn+1qn+1)− g2(p, qn+1) ≤ 0 ⇒
g1(q, µ̂(q))− g2(p, q) < 0 ⇒ ψ2(p, q) = g1(q, µ̂(q))− g2(p, q)−

∫ µ̂(p)

q
g12(s, µ̂(q))ds < 0

Step 5. Given q ∈ S
⋂
{q : q ≤ qn+1}, ψ(p, q) is weakly upcrossing in p on [Rnqn, qn].

By g SPM and Assumption 1, σ̂(z, t) ≡ g2(t, 1− z)/g1(1− z, µ̂(q))− 1 is non-decreasing

in t and z, and thus, obeys (28) (with s = z). Likewise, σ̃(z, t) ≡ g1(1−z, µ̂(q))1z≥1−µ̂(t)

obeys (28) since 1z≥1−µ̂(t) is non-decreasing in z and t and g1(1 − z, µ̂(q)) > 0 is inde-

pendent of t. Thus, the product σ = σ̂ · σ̃ also satisfies (28). Now, rewrite (30) using

change of variable z = 1− s as:

ψ(t, q) =

∫ 1−q

0

[
g2(t, 1− z)

g1(1− z, µ̂(q))
− 1

]
g1(1− z, µ̂(q))1z≥1−µ̂(t) ≡

∫ 1−q

0

σ(z, t)dz

which must be weakly upcrossing in t by Theorem 1 in Anderson and Smith (2021).

Step 6. ψ(p, q) ≥ 0 for all (p, q) ∈ [Rnqn, qn]× [Rnqn, p].

Trivially ψ(qn, Rnqn) = 0, with Step 2, then Step 3, followed by ψ continuous reveals:

ψ(qn, Rnqn) = 0 ⇒ ψ(qn, q) > 0 ∀ q ∈ (Rnqn, p]

⇒ ψ(p, q) ≥ 0 ∀ (p, q) ∈ [Rnqn, qn]× (Rnqn, p]

⇒ ψ(p, q) ≥ 0 ∀ (p, q) ∈ [Rnqn, qn]× [Rnqn, p]

Step 7. Given (20), ψ(p, q) ≥ 0 for all (p, q) ∈ [Rnqn, qn]× [Rkqk, qk] with qk ≤ qn+1.

Assume qk ≤ qn+1. Then use ψ(Rnqn, qn+1) = 0 (trivial), along with Step 4, then Step 5,

followed by ψ continuous to get:

ψ(Rnqn, qn+1) = 0 ⇒ ψ(Rnqn, q) > 0 ∀ q ∈ [Rkqk, qk)

⇒ ψ(p, q) ≥ 0 ∀(p, q) ∈ [Rnqn, qn]× [Rkqk, qk)

⇒ ψ(p, q) ≥ 0 ∀(p, q) ∈ [Rnqn, qn]× [Rkqk, qk]

Step 8. Median matching is the unique equilibrium given g1(m̄, x) ≥ g2(x̄, m̄). SPC is

the unique equilibrium given inequality (20).

Since the equilibrium matching is unique by Theorem 0, we need only verify that smooth

positive clustering is an equilibrium. SPC is an increasing pure pairing, and is feasible

by construction. Thus, by Lemma 1 we complete the proof by showing φ(x, y) ≥ 0 for
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all supervisors x ≥ y. Trivially, φ(x, y) ≥ 0 iff ψ(p, q) ≡ φ(X(p), X(q)) ≥ 0. Step 6

establishes this inequality for all supervisors in the same cluster. This is sufficient when

g1(m̄, x) ≥ g2(x̄, m̄), since SPC is median matching in this case (by Lemma 2). When

g1(m̄, x) < g2(x̄, m̄), Lemma 2 asserts that SPC involves at least two clusters, in which

case Step 7 is also required.

A.5 Proof of Corollary 3

We prove Corollary 3 by verifying the premise of Theorem 2.

Step 1. Characterization of the optimal capital stock.

Define the optimal capital stock κ∗(p, q) ≡ argmaxk≥0 [ĝ(p, q, κ)− ϱκ]. By ĝ strictly

concave in κ with a continuous derivative ĝ3 obeying limκ→0 ĝ3(p, 0, κ) = ∞ for p > 0

and limκ→∞ ĝ3(1, 1, κ) = 0 with ĝ3(p, q, κ) non-decreasing in (p, q) (by ĝ SPM), there is

a unique optimal κ∗(p, q) which necessarily satisfies the FOC:

ĝ3(p, q, κ
∗(p, q)) = ϱ ∀ p > 0 (31)

Thus, since ĝ is C3, the function κ∗ is C2 and strictly positive for all p > 0. And we

may differentiate (31) in p and in q, and then apply ĝ strictly SPM and strictly concave

in κ to get:26

κ∗i (p, q) = − ĝi3(p, q, κ
∗(p, q))

ĝ33(p, q, κ∗(p, q))
> 0 for i ∈ {1, 2} (32)

Step 2. Induced production g meets all assumptions of the role-assignment model.

By assumption, ĝ(p, q, κ) > 0 for (p, q, κ) > 0, while κ∗(p, q) > 0 by Step 1. Thus,

g(p, q) = ĝ(p, q, κ∗(p, q)) > 0 for all (p, q) > 0. Since the FOC holds with equality and

ĝ is C3, we apply the Envelope Theorem (ET) and Step 1 to discover g strictly SPM:

gi(p, q) = ĝi(p, q, κ
∗(p, q)) ⇒ g12(p, q) = ĝ12(p, q, κ

∗(p, q))+ĝi3(p, q, κ
∗(p, q))κ∗i (p, q) > 0

By the same ET application, g must be C2, since κ is C2 and ĝ is C3, and gi are

uniformly bounded in q on open intervals in p by κ∗ and ĝ1 and ĝ2 uniformly bounded

on open balls.

26Capital increasing in (p, q) and g SPM follows from Topkis (1998) without assuming differentiability
of ĝ. But we use the explicit expression for κ∗

i in later arguments.
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Inequality g(p, q) ≷ g(q, p) as p ≷ q for all κ > 0 follows easily from ĝ(p, q, κ) ≷

ĝ(q, p, κ) as p ≷ q for all κ > 0 and κ∗ > 0 for all p > 0. Finally, use κ∗ > 0 for p > 0

and the assumed ordering on the derivatives of ĝ, then the Envelope Theorem to find:

p > 0 ⇒ ĝ1(p, p, κ
∗(p, p)) > ĝ2(p, p, κ

∗(p, p)) ⇔ g1(p, p) > g2(p, p)

Step 3. Induced production g is homogeneous of degree 1.

Any differentiable h.d. 1 function has h.d. 0 first derivatives, since (for example):

ĝ(tp, tq, tκ) = tĝ(p, q, κ) ⇒ tĝi(tp, tq, tκ) = tĝi(p, q, κ)

Combine this equality with the fact that κ∗(p, q) uniquely solves the FOC (31) to get:

ĝ3(p, q, κ
∗(p, q)) = ϱ ⇒ ĝ3(tp, tq, tκ

∗(p, q)) = ϱ ⇒ κ∗(tp, tq) = tκ∗(p, q)

Step 4. Assumption 3 and inequality (19) jointly imply Assumption 1.

Fix any a ≥ b ≥ c. Then since κ∗(a, b) ≥ κ∗(b, c) (shown in Step 1), we combine

Assumption 3 and inequality (19), followed by (32), to discover:

ĝ11(b, c, κ
∗(b, c))− ĝ13(b,c,κ∗(b,c))2

ĝ33(b,c,κ∗(b,c))

ĝ1(b, c, κ∗(b, c))
≥
ĝ22(a, b, κ

∗(a, b))− ĝ23(a,b,κ∗(a,b))2

ĝ33(a,b,κ∗(a,b))

ĝ2(a, b, κ∗(a, b))

⇒ ĝ11(b, c, κ
∗(b, c))− ĝ13(b, c, κ

∗(b, c))κ∗1(b, c)

ĝ1(b, c, κ∗(b, c))
≥ ĝ22(a, b, κ

∗(a, b))− ĝ23(a, b, κ
∗(a, b))κ∗2(a, b)

ĝ2(a, b, κ∗(a, b))

⇒
∂ĝ1(b,c,κ∗(b,c))

∂b

ĝ1(b, c, κ∗(b, c))
≥

∂ĝ2(a,b,κ∗(a,b))
∂b

ĝ2(a, b, κ∗(a, b))
⇒ ĝ1(b, c, κ

∗(b, c))

ĝ2(a, b, κ∗(a, b))
non-decreasing in b

Thus, by the Envelope Theorem g1(b, c)/g2(a, b) is non-decreasing in b.

A.6 Verifying Examples for Theorem 2

Example 1: CES. The function g is homogeneous and strictly SPM, since

g12(p, q) = α(1− α)β(β − σ)(pq)σ−1g(p, q)
β−2σ

β > 0
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Trivially, g(p, q) ≷ g(q, p) as p ≷ q by σ > 0 and α ∈ (1/2, 1), and g1(p, p)/g2(p, p) =

α/(1− α) > 1. Assumption 1 is satisfied since:

∂ log(g1(b, c)/g2(a, b))

∂b
=

(β − σ)bσ−1(α2aσ − (1− α)2cσ)

(αaσ + (1− α)bσ)(αbσ + (1− α)cσ)
> 0 ∀a ≥ c

Example 2: Gavilan Production. We show that ĝ fits the role-assignment model

with capital and the extra restrictions imposed by Corollary 3. Trivially, ĝ is h.d. 1.

Step 1. ĝ meets the premise of the role-assignment model with capital.

Trivially, ĝ is strictly SPM and strictly positive for (p, q, κ) > 0 and C3 with uniformly

bounded first derivatives on any open ball. It is straightforward to verify that ĝ is

strictly concave in κ with a continuous derivative ĝ3 that obeys limκ→0 ĝ3(p, 0, κ) = ∞
and limκ→∞ ĝ3(1, 1, κ) = 0. Gavilan (2012) establishes that ĝ(p, q, κ) ≷ ĝ(q, p, κ) as

p ≷ q. Finally, using α ∈ (0, 1), we have:

ĝ1(p, p, κ)

ĝ2(p, p, κ)
= 1 +

(1− α)κσ

αpσ
> 1 ⇒ ĝ1(p, p, κ) > ĝ2(p, p, κ)

Step 2. Gross production ĝ satisfies Assumption 3.

Using σ ∈ (0, 1/2) and α ∈ (0, 1), and computing the requisite derivatives of ĝ, we find:

1 < 2(1− σ) ⇒ 1 ≤ 2(1− σ)(1− α)(κ′)σ + αbσ

(1− α)(κ′)σ + αbσ

⇒ ĝ22(a, b, κ
′)

ĝ2(a, b, κ′)
= −2(1− σ)(1− α)(κ′)σ + αbσ

2b [(1− α)(κ′)σ + αbσ]
≤ − 1

2b
=
ĝ11(b, c, κ

′)

ĝ1(b, c, κ)

And thus, the ratio ĝ1(b, c, κ)/ĝ2(a, b, κ
′) is non-decreasing in b as required.

Step 3. Gross production ĝ obeys inequality (19).

Differentiating the given gross production function, we discover:

− ĝ13(b, c, κ)
2

ĝ1(b, c, κ)ĝ33(b, c, κ)
=

(1− α)κσ

b2 [2(1− α)κσ + 4α(1− σ)cσ]
(falling in κ and c)

− ĝ23(a, b, κ
′)2

ĝ2(a, b, κ′)ĝ33(a, b, κ′)
=

α(1− α)(1− 2σ)2(κ′)σbσ−1

2 [(1− α)(κ′)σ + αbσ] [(1− α)(κ′)σ + 2α(1− σ)bσ]
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Use monotonicity of the top function in κ and c, along with κ′ ≥ κ and b ≥ c to get:

− ĝ13(b, c, κ)
2

ĝ1(b, c, κ)ĝ33(b, c, κ)
−
(
− ĝ23(a, b, κ

′)2

ĝ2(a, b, κ′)ĝ33(a, b, κ′)

)
≥ − ĝ13(b, b, κ

′)2

ĝ1(b, b, κ′)ĝ33(b, b, κ′)
−

(
− ĝ23(a, b, κ

′)2

ĝ2(a, b, κ′)ĝ33(a, b, κ′)

)
=

(1− α)(κ′)σ [(1− α)(κ′)σ + 4α(1− σ)σbσ]

2b [(1− α)(κ′)σ + αbσ] [(1− α)(κ′)σ + 2α(1− σ)bσ]
≥ 0

A.7 Proof of Lemma 5

Define the the LHS of (17), as:

ξ(α, σ, ρ, R) ≡
(

α + (1− α)Rσ

αRσ + (1− α)ρσ

)β−σ
σ

Step 1. ξ falls in σ for all ρ ≤ R2.

Differentiating ξ in σ we discover:

ξσ(·)σ2

ξ(·)
= (β − σ)σ

(
(1− α)ρσ(log(R)− log(ρ))

αRσ + (1− α)ρσ
− α log(R)

α + (1− α)Rσ

)
− β log(ξ(·))

Evaluating at ρ = R2 we find:

ξσ(α, σ,R
2, R)σ2

ξ(α, σ,R2, R)
∝ Rσ−β log(R) < 0 (33)

Differentiating a second time, we find:

∂
[
ξσ(α,σ,ρ,R)σ2

ξ(α,σ,ρ,R)

]
∂ρ

∝ ρσ−1 [(1− α)ρσ + (1 + (β − σ)(log(R)− log(ρ)))Rσ]

((1− α)ρσ + αRσ)2
≥ 0 (34)

Combining (33) and (34) we see that ξσσ
2/ξ is increasing in ρ, negative at ρ = R2; and

thus, ξσ(α, σ, ρ, R) < 0 for all ρ ≤ R2.

Step 2. ξ falls in α for all ρ ≤ R2.
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Differentiating, we find:

∂ log(ξ(α, σ, ρ, R))

∂α
∝

(
α + (1− α)Rσ

αRσ + (1− α)ρσ

)β
σ ρσ −R2σ

(α + (1− α)Rσ)2
≤ 0

Step 3. There exists a unique β∗(α, σ) > σ satisfying (16), and β∗ is increasing in α

and σ. Median matching obtains iff β ≤ β∗.

The LHS of (16) is continuous and strictly increasing in β, converging to ∞ as β → ∞.

And since α ∈ (1/2, 1), the LHS falls short of the RHS at β = σ. Altogether, there exists

a unique β∗ > σ satisfying (16). To see that β∗ must be increasing in σ and α note that

the LHS of (16) is ξ(α, σ, 0, 2−1/γ), which decreases in α and σ by Steps 1 and 2. Since

the LHS of (16) increases in β, median matching obtains iff β ≤ β∗ by Theorem 2.

Step 4. The locus ρS shifts down in α and σ at R∗, i.e., ∂ρS(R
∗)/∂σ ≤ 0.

Since R2 ≥ ρM(R), ξα(α, σ, ρS(R
∗), R∗) < 0 and ξσ(α, σ, ρS(R

∗), R∗) < 0 by Steps 1

and 2, while ξρ < 0 (by β > σ). Further, the RHS of (17) is independent of σ and

increasing in α. Altogether, ∂ρS(R
∗)/∂α ≤ 0 and ∂ρS(R

∗)/∂σ ≤ 0.

Step 5. Perfect sorting obtains in the limit as β ↑ ∞ or α ↓ 1
2
.

Rewrite the smooth pasting condition (17) as:

α + (1− α)Rσ

αRσ + (1− α)ρS(R)σ
≡

(
α

1− α

) σ
β−σ

(35)

Notice that the RHS converges to 1 as β → ∞ or α → 1/2. Thus, the LHS must also

converge to 1, which requires ρS(R) → R → 1; and thus r∗ → 1. By definition, this

implies qn+1/qn converges to 1, and the matching converges to perfect sorting.

A.8 Monotone Sorting: Proof of Theorem 3

By definition, the quantile matching function for smooth positive clustering is:

µ̂(p) =
p+ 1

2
(1− r)rn ∀ p ∈ (rn+1, Rrn)

p− 1
2
(1− r)rn ∀ p ∈ (Rrn, rn)
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Thus, for p ∈ [rn+1, rn] we have |µ̂(p) − p| = (1 − r)rn/2; and so, the average distance

between matched partners is

1

2

∞∑
n=0

(
rn − rn+1

)
(1− r)rn =

1

2
(1− r)2

∞∑
n=0

r2n =
(1− r)2

2(1− r2)

which falls in r. The comparative statics in α, β, and σ then follow from Lemma 5.

A.9 Verification of Equation (18)

Easily, the quantile analogue of (10) holds; namely,

W ′(p) = g2(µ̂(p), p) ∀p ∈ (qn+1, Rqn)

W ′(p) = g1(p, µ̂(p)) ∀p ∈ (Rqn, qn)
(36)

and since r is constant across clusters, the quantile matching function obeys µ̂(rp) =

rµ̂(p) for all p. Using these facts and homogeneity of the production function, we have

the following equality for all assistants p:

W ′(rp) = g2(µ̂(rp), rp) = g2(rµ̂(p), rp) = rβ−1g2(µ̂(p), p) = rβ−1W ′(p)

Now use W ′(rp) = rβ−1W ′(p), the fact that marginal wages are defined a.e., and change

of variable s = rt, to get:

W (rp) = W (0) +

∫ rp

0

W ′(s)ds =

∫ p

0

rW ′(rt)dt = rβ
∫ p

0

W ′(t)dt = W (0) + rβW (p)

Then by W (0) = g(0, 0)/2 = 0, we discover W (rp) = rβW (p); and so (18) holds.

A.10 Proof of Theorem 4

Median matching is the unique equilibrium when g1(m̄, x) ≥ g2(x̄, m̄) by Theorem 2.

The following proof verifies that the premise of Lemma 7 is met in the remaining case,

g1(m̄, x) < g2(x̄, m̄) for which median matching cannot obtain by Theorem 1.

Step 1. The order of ratios.

By Lemma 3, (rn, Rn) is non-decreasing in n; and thus, the averages R̄ = (Rn+Rn+1)/2,
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r̄ = (rn + rn+1)/2, and q̄ = (qn + qn+1)/2 obey:

(Rn+1, rn+1) ≥ (R̄, r̄) ≥ (Rn, rn) and qn+1 ≤ q̄ ≤ qn (37)

Step 2. Inequalities rn
Rn

< R̄ and rn
Rn+1

Rn
≤ r̄ hold for all n.

For the first inequality note that Rn ∈ (1/2, 1) implies R2
n > 2Rn − 1 ≡ ρM(Rn) = rn

and R̄ ≥ Rn by (37). For the second inequality use (37), followed by Rn < 1 to find:

Rn+1 ≥ Rn ⇒ Rn+1(Rn − 1) ≤ Rn(Rn − 1)

⇔ Rn+1(Rn − 1) +Rn+1Rn ≤ Rn(Rn − 1) +Rn+1Rn

⇔ (2Rn − 1)Rn+1 ≤ (Rn+1 +Rn − 1)Rn

⇔ (2Rn − 1)Rn+1 ≤ (2R̄− 1)Rn ⇔ rnRn+1 ≤ r̄Rn

where the last implications uses rn = ρM(Rn) = 2Rn − 1 and r̄ = ρM(R̄) ≡ 2R̄ − 1 (by

ρM linear and rn = ρM(Rn) and rn+1 = ρM(Rn+1)).

Step 3. We have g1(R̄q̄, r̄q̄)/g2(q̄, R̄q̄) ≤ 1 for all n.

To conserve space, define the function ϕ(r, R, q) ≡ g1(Rq, rq)/g2(q, Rq). Since (rn, Rn)

is non-decreasing (Lemma 3), the SPC solution has an infinite sequence of clusters

whenever median matching does not obtain. Thus, by Lemma 2, equation (13) holds for

all n. Equivalently, ϕ(rn, Rn, qn) = 1 for all n.

Now, by assumption ϕ is separately log-convex in each argument and log-SPM in

(r, R, q−1) (i.e., with q reverse ordered); and thus, we can use in order: (i) log-convexity

in r, (ii) log-convexity in R, (iii) log-convexity in q, (iv) log-SPM in (r, R, q−1) with (37),

and (v) ϕ(rn, Rn, qn) = 1 for all n, to discover:

ϕ(r̄, R̄, q̄)8 ≤ ϕ(rn, R̄, q̄)
4ϕ(rn+1, R̄, q̄)

4

≤ ϕ(rn, Rn, q̄)
2ϕ(rn, Rn+1, q̄)

2ϕ(rn+1, Rn, q̄)
2ϕ(rn+1, Rn+1, q̄)

2

≤ ϕ(rn, Rn, qn)ϕ(rn, Rn, qn+1)ϕ(rn, Rn+1, qn)ϕ(rn, Rn+1, qn+1)

×ϕ(rn+1, Rn, qn)ϕ(rn+1, Rn, qn+1)ϕ(rn+1, Rn+1, qn)ϕ(rn+1, Rn+1, qn+1)

≤ ϕ(rn, Rn, qn)
4ϕ(rn+1, Rn+1, qn+1)

4 = 1

Step 4. The SPCS obeys across cluster incentive compatibility, i.e., (20) for all n.

Use Step 3 along with the definition of ϕ, followed by rn
Rn+1

Rn
≤ r̄ (Step 2) with g SPM,

39



then rn
Rn

≤ R̄ (Step 2) with Assumption 1, and then q̄ = (qn + rnqn)/2 = Rnqn to get:

1 ≥ g1(R̄q̄, r̄q̄)

g2(q̄, R̄q̄)
≥ g1(R̄q̄, rnRn+1R

−1
n q̄)

g2(q̄, R̄q̄)
≥ g1(rnR

−1
n q̄, rnRn+1R

−1
n q̄)

g2(q̄, rnR−1
n q̄)

=
g1(rnqn, rnRn+1qn)

g2(Rnqn, rnqn)

⇒ g1(rnqn, rnRn+1qn) ≤ g2(Rnqn, rnqn) ⇔ g1(qn+1, Rn+1qn+1) ≤ g2(Rnqn, qn+1)

A.11 Mobility increases in r

Lemma 8. Assume SPC in two markets with constant ratios r = qn+1/qn and r′ =

q′n+1/q
′
n > r. Mobility is higher under r′ than r.

Consider mobility over some time interval τ > 0. Define p∗n(R) = rn+1 if τ(p|Rrn) ≤ τ

for all p ∈ [rn+1, Rrn] and let p∗n(R) ∈ [rn+1, Rrn) solve τ(p∗n(R)|Rrn) = τ otherwise.

Step 1. If αr ≤ 1 then αRrn+1 − p∗n(R) is upcrossing in n.

αRrn+1 − p∗n(R) ≥ (>)0 ⇔ τ ≥ (>)τ(αRrn+1|Rrn) ⇔ eλτ ≥ (>)
1− αRrn+1

1−Rrn

Now note that the fraction on the right is non-increasing in n when αr ≤ 1.

Step 2. Within cluster mobility increases in r.

By definition within cluster mobility under r is:

mW (r) =
∞∑
n=0

∫ Rrn

rn+1

1τ(p|Rrn)≤τdp

Define k ≡ r′/r > 1 and use change of variable p = (R/R′)k−nq to get:

mW (r′) =
∞∑
n=0

∫ R′(r′)n

(r′)n+1

1τ(q|R′(r′)n)≤τdq =
∞∑
n=0

∫ Rrn

R
R′ kr

n+1

1τ(p|Rrn)≤τdp

Then we have:

mW (r′)−mW (r) =
∞∑
n=0

∆n(R
′, R), where: (38)

∆n(R
′, R) =

{
∆2

n(R
′, R) ≡ R′knrn − kn+1rn+1 − (Rrn − p∗n(R)) ∀ p∗n(R) ∈

[
rn+1, R

R′kr
n+1

]
∆3

n(R
′, R) ≡

(
R′

R
kn − 1

)
(Rrn − p∗n(R)) ∀ p∗n(R) ∈

(
R
R′kr

n+1, Rrn
] }

Using k > 1, R′ > R, and p∗n(R) ∈ [rn+1, Rrn] we have:

∆3
n ≥ 0 and ∆2

n ≥ R′knrn − kn+1rn+1 −
(
Rrn − rn+1

)
≡ ∆1

n(R
′, R) (39)
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Since R′ ≥ r′, we have k/R′ = [r′/(rR′)]r ≤ 1; and thus, by Step 1 the difference

(R/R′)krn+1−p∗n(R) is upcrossing in n. Consequently, there are two possibilities, either

(R/R′)krn+1 ≥ p∗n(R) for all n, in which case:

∞∑
n=0

∆n(R
′, R) =

∞∑
n=0

∆3
n(R

′, R) ≥ 0 by (39)

Alternatively, ∃ finite n∗ s.t. (R/R′)krn+1 ⋛ p∗n(R) as n ⋛ n∗; and thus, by (39):

∞∑
n=0

∆n(R
′, R) =

n∗−1∑
n=0

∆3
n(R

′, R) +
∞∑

n=n∗

∆2
n(R

′, R) ≥
∞∑

n=n∗

[
R′knrn − kn+1rn+1 −Rrn + rn+1

]
=

∞∑
n=n∗

[
R′(r′)n −Rrn + rn+1 − (r′)n+1

]
=

∞∑
n=n∗

[(r′)n(R′ − r′)− rn(R− r)]

=
1

2

∞∑
n=n∗

[(r′)n(1− r′)− rn(1− r)] =
1

2

[
∞∑

n=n∗

((r′)n − rn)−
∞∑

n=n∗+1

((r′)n − rn)

]

=
1

2

[
(r′)n

∗ − rn
∗] ≥ 0 by r′ ≥ r

where we have used R′ = (1 + r′)/2 and R = (1 + r)/2 in the third line.

Step 3. Between cluster mobility increases in r.

By definition between cluster mobility under r is:

mB(r) =
∞∑
n=0

∫ rn

rn+1

1τ(p|rn)≤τdp

Use k ≡ r′/r and change of variable p = k−nq to get:

mB(r
′) =

∞∑
n=0

∫ (r′)n

(r′)n+1

1τ(q|(r′)n)≤τdq =
∞∑
n=0

∫ rn

krn+1

1τ(p|rn)≤τdp

Then we have:

mB(r
′)−mB(r) =

∞∑
n=0

∆n(1, 1) (40)

Since kr = r′ ≤ 1, Step 1 implies that krn+1 − p∗n(1) is upcrossing in n. Thus, either

krn+1 ≥ p∗n(1) for all n, in which case
∑∞

n=0∆n(1, 1) =
∑∞

n=0∆
3
n(1, 1) ≥ 0, or there
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exists finite n∗ s.t. krn+1 ⋛ p∗n(1) as n ⋛ n∗; and thus, by (39):

∞∑
n=0

∆n(1, 1) =
n∗−1∑
n=0

∆3
n(1, 1) +

∞∑
n=n∗

∆2
n(1, 1) ≥

∞∑
n=n∗

∆1
n(1, 1)

=
∞∑

n=n∗

[
kn(rn − krn+1)− (rn − rn+1)

]
=

∞∑
n=n∗

[knrn − rn]−
∞∑

n=n∗+1

[knrn − rn]

= kn
∗
rn

∗ − rn
∗ ≥ 0 by k ≥ 1
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